January 05, 2025
Building Sovereign AI for Government: Beyond 'Data Stays in India'
A large organization deployed an AI-powered grievance routing system. The vendor promised “complete data sovereignty” - all data stored on Indian servers, no cross-border transfers.
Six months later, a technical audit revealed the system was calling GPT-4 APIs for every grievance classification. Sensitive information was being sent to OpenAI’s servers in the US.
The vendor’s defense: “The data is stored in India. We only send queries to the API.”
This is the sovereignty theater that passes for “sovereign AI” in many enterprise deployments. Data localization checkboxes get ticked while actual sovereignty is compromised. The fault lies with vendors who make misleading claims and the broader industry’s loose definition of “sovereignty.”
What Sovereignty Actually Means
True AI sovereignty isn’t a single property. It’s control across the entire stack:
flowchart TB
subgraph DataSov["Data Sovereignty"]
A[Storage Location]
B[Processing Location]
C[Retention Control]
D[Access Control]
end
subgraph ModelSov["Model Sovereignty"]
E[Training Data Origin]
F[Model Weights Ownership]
G[Fine-tuning Capability]
H[No Foreign Dependencies]
end
subgraph InferenceSov["Inference Sovereignty"]
I[India-Hosted Inference]
J[No External API Calls]
K[Offline Capability]
L[Audit Every Query]
end
subgraph GovSov["Governance Sovereignty"]
M[Indian Jurisdiction]
N[RTI Compliance]
O[CAG Audit Ready]
P[No Foreign Compulsion]
end
DataSov --> ModelSov --> InferenceSov --> GovSov
Most “sovereign AI” implementations address only the first layer. The deeper you go, the fewer solutions remain truly sovereign.
The Hidden Dependencies Problem
Let’s examine where sovereignty breaks in typical government AI deployments:
Dependency 1: Inference APIs
“We use Azure OpenAI Service in India region.”
This sounds sovereign but isn’t:
- Queries still go through Microsoft’s infrastructure
- Microsoft retains logging rights per their terms
- Model behavior is controlled by OpenAI, a US company
- API availability depends on US export control decisions
Even India-region cloud services often route through global infrastructure for AI capabilities.
Dependency 2: Embedding and Vector Services
RAG systems need embeddings. Common pattern:
# Looks sovereign...
from azure.search.documents import SearchClient
search_client = SearchClient(endpoint="https://mysearch.search.windows.net", ...)
# But where does embedding happen?
from openai import OpenAI
client = OpenAI() # This calls US servers
embedding = client.embeddings.create(input=citizen_query, model="text-embedding-ada-002")
Every document you embed, every query you vectorize - sent to foreign servers.
Dependency 3: Model Updates
You’re running a fine-tuned model. But:
- Base model weights come from Meta (Llama) or Mistral (French)
- Model updates require re-downloading from foreign sources
- Security patches depend on foreign maintainers
- License terms can change
A government system dependent on a foreign model is sovereign today, potentially non-sovereign tomorrow.
Dependency 4: Tooling Chain
Your model runs in India. But:
- LangChain sends telemetry to US servers
- Weights & Biases logs your experiments
- Hugging Face Hub hosts your model cards
- GitHub stores your code
The MLOps ecosystem creates dozens of foreign touchpoints.
A Truly Sovereign Architecture
Here’s what genuine sovereignty requires:
Layer 1: Sovereign Infrastructure
flowchart TB
subgraph Infra["Sovereign Infrastructure"]
A[NIC Data Centers]
B[GI Cloud / MeghRaj]
C[State Data Centers]
D[STQC Certified Private Cloud]
end
subgraph Compute["AI Compute"]
E[Indian-Owned GPU Clusters]
F[No Hyperscaler AI Services]
G[Air-Gap Capable]
end
subgraph Network["Network"]
H[NKN Backbone]
I[No International Routing for AI Traffic]
J[CERT-In Monitored]
end
Infra --> Compute --> Network
Not “India region” of a US cloud. Actual Indian infrastructure with:
- Physical servers in India
- Indian operating entity
- No foreign government data access rights
- STQC/MeitY certified
Layer 2: Sovereign Models
Models you can run without ongoing foreign dependencies:
class SovereignModelRegistry:
"""
Models that meet sovereignty requirements
"""
APPROVED_MODELS = {
# Open-weight models (downloaded once, run forever)
'llama-3-70b': {
'source': 'Meta (open weights)',
'license': 'Llama 3 Community License',
'sovereignty': 'high', # Weights owned after download
'notes': 'Review license for government use'
},
'mistral-7b': {
'source': 'Mistral AI (open weights)',
'license': 'Apache 2.0',
'sovereignty': 'high',
'notes': 'Fully permissive license'
},
# Indian models
'krutrim': {
'source': 'Ola (Indian)',
'license': 'Proprietary',
'sovereignty': 'highest',
'notes': 'Indian company, Indian training data'
},
'airavata': {
'source': 'AI4Bharat',
'license': 'Open',
'sovereignty': 'highest',
'notes': 'Indian research, Indic language focus'
},
'sarvam-1': {
'source': 'Sarvam AI (Indian)',
'license': 'Proprietary',
'sovereignty': 'highest',
'notes': 'Indian company, voice-first'
},
# NOT SOVEREIGN - for reference
'gpt-4': {
'source': 'OpenAI (US)',
'sovereignty': 'none',
'notes': 'API-only, US jurisdiction'
},
'claude': {
'source': 'Anthropic (US)',
'sovereignty': 'none',
'notes': 'API-only, US jurisdiction'
},
}
def is_sovereign(self, model_id: str) -> bool:
model = self.APPROVED_MODELS.get(model_id)
return model and model['sovereignty'] in ['high', 'highest']
Layer 3: Sovereign Inference
Every inference call must stay within Indian jurisdiction:
class SovereignInferenceGateway:
"""
Ensure all inference happens on sovereign infrastructure
"""
def __init__(self):
self.allowed_endpoints = [
'https://ai.gov.in/*',
'https://*.nic.in/*',
'https://*.meghraj.gov.in/*',
# Approved private sovereign providers
]
self.blocked_endpoints = [
'*openai.com*',
'*anthropic.com*',
'*azure.com/openai*',
'*api.mistral.ai*',
]
def route_inference(self, request: InferenceRequest) -> InferenceResponse:
# Validate no external calls will be made
self.validate_sovereignty(request)
# Route to sovereign endpoint
endpoint = self.select_sovereign_endpoint(request.model_id)
# Execute with full audit trail
response = self.execute_with_audit(endpoint, request)
return response
def validate_sovereignty(self, request: InferenceRequest):
"""
Ensure request won't leak to foreign infrastructure
"""
# Check model is sovereign
if not self.model_registry.is_sovereign(request.model_id):
raise SovereigntyViolation(f"Model {request.model_id} is not sovereign")
# Check no external tool calls
if request.tools:
for tool in request.tools:
if self.calls_external_api(tool):
raise SovereigntyViolation(f"Tool {tool.name} calls external API")
# Check RAG sources are sovereign
if request.rag_enabled:
if not self.is_sovereign_vector_store(request.vector_store):
raise SovereigntyViolation("Vector store is not sovereign")
Layer 4: Sovereign Observability
Logging and monitoring must also be sovereign:
class SovereignObservability:
"""
All telemetry stays in India
"""
def __init__(self):
# India-hosted logging
self.log_store = IndiaHostedLogStore(
endpoint="https://logs.nic.in",
retention_days=365 * 7, # 7 years for government
)
# No external telemetry
self.disable_external_telemetry()
def disable_external_telemetry(self):
"""
Ensure no third-party telemetry leaks
"""
# Block common telemetry endpoints
os.environ['LANGCHAIN_TRACING'] = 'false'
os.environ['WANDB_MODE'] = 'disabled'
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
# Disable analytics in common libraries
import transformers
transformers.utils.logging.disable_progress_bar()
def log_inference(self, request, response, metadata):
"""
Complete audit trail for RTI/CAG compliance
"""
audit_record = {
'timestamp': datetime.now(IST).isoformat(),
'request_id': str(uuid4()),
# What was asked
'query_hash': self.hash_pii_safe(request.query),
'model_used': request.model_id,
# What was returned
'response_hash': self.hash_pii_safe(response.text),
'confidence': response.confidence,
# Sovereignty verification
'inference_location': 'NIC-Delhi-DC1',
'model_location': 'GI-Cloud-Mumbai',
'external_calls': [], # Must be empty
# Governance
'department': metadata.department,
'application': metadata.application,
'user_role': metadata.user_role,
}
self.log_store.write(audit_record)
return audit_record['request_id']
RTI and CAG Compliance
Government AI has unique accountability requirements:
RTI Readiness
Under RTI Act, citizens can ask:
- “Why was my application rejected?”
- “What data did the AI use?”
- “How does the AI make decisions?”
Your system must be able to answer:
class RTIComplianceEngine:
"""
Handle RTI queries about AI decisions
"""
def respond_to_rti(self, rti_request: RTIRequest) -> RTIResponse:
if rti_request.type == 'individual_decision':
return self.explain_individual_decision(rti_request)
elif rti_request.type == 'system_logic':
return self.explain_system_logic(rti_request)
elif rti_request.type == 'data_used':
return self.explain_data_sources(rti_request)
def explain_individual_decision(self, request) -> RTIResponse:
# Retrieve the specific decision
decision = self.audit_log.get_decision(
citizen_id=request.citizen_id,
decision_date=request.decision_date
)
return RTIResponse(
decision_outcome=decision.outcome,
factors_considered=self.humanize_factors(decision.factors),
data_sources_used=decision.data_sources,
model_version=decision.model_version,
human_review_status=decision.human_review,
appeal_process=self.get_appeal_process(decision.type)
)
def explain_system_logic(self, request) -> RTIResponse:
"""
Explain how the AI system works in general
This should be a standard document, not generated per-request
"""
return RTIResponse(
system_description=self.get_system_documentation(),
model_type="Classification model for grievance routing",
training_data_description="Historical grievances from 2019-2024",
accuracy_metrics=self.get_published_metrics(),
human_oversight_description=self.get_oversight_documentation(),
limitations=self.get_known_limitations()
)
CAG Audit Readiness
The Comptroller and Auditor General can audit any government AI system:
class CAGAuditSupport:
"""
Support CAG audits of AI systems
"""
def generate_audit_package(self, audit_period: tuple) -> AuditPackage:
return AuditPackage(
# System documentation
system_architecture=self.export_architecture_docs(),
model_documentation=self.export_model_cards(),
data_flow_diagrams=self.export_data_flows(),
# Decision logs
decision_summary=self.summarize_decisions(audit_period),
decision_samples=self.sample_decisions(audit_period, n=1000),
appeal_outcomes=self.get_appeal_statistics(audit_period),
# Performance metrics
accuracy_over_time=self.get_accuracy_timeseries(audit_period),
fairness_metrics=self.get_fairness_report(audit_period),
error_analysis=self.get_error_patterns(audit_period),
# Sovereignty verification
infrastructure_audit=self.verify_sovereignty(audit_period),
external_call_log=self.get_external_calls(audit_period), # Should be empty
vendor_contracts=self.get_vendor_agreements(),
# Expenditure
cost_breakdown=self.get_cost_analysis(audit_period),
procurement_records=self.get_procurement_docs(),
)
The Cost of True Sovereignty
Let’s be honest about trade-offs:
| Factor | Sovereign Approach | Non-Sovereign (API) |
|---|---|---|
| Model capability | Good, not bleeding-edge | Best available |
| Latency | Higher (India hosting) | Lower (global CDN) |
| Cost per query | Higher (self-hosted) | Lower (pay-per-use) |
| Setup complexity | High | Low |
| Vendor lock-in | Low | High |
| Data control | Complete | Limited |
| Regulatory risk | Low | High |
| Continuity risk | Low | High (foreign policy dependent) |
For citizen-facing government services, the sovereignty trade-off is worth it. For internal productivity tools with no sensitive data, the calculus might differ.
Implementation Architecture
A complete sovereign AI architecture for government:
flowchart TB
subgraph Citizens["Citizen Touchpoints"]
A[Web Portal]
B[Mobile App]
C[UMANG]
D[DigiLocker]
end
subgraph Gateway["Sovereign AI Gateway"]
E[Request Validation]
F[Sovereignty Check]
G[Load Balancer]
end
subgraph Inference["Sovereign Inference"]
H[LLM Cluster - NIC DC]
I[Embedding Service - GI Cloud]
J[Vector Store - State DC]
end
subgraph Data["Sovereign Data"]
K[(Citizen Data - Aadhaar Vault)]
L[(Document Store - DigiLocker)]
M[(Transaction Logs - NIC)]
end
subgraph Governance["Governance Layer"]
N[Audit Trail]
O[RTI Engine]
P[CAG Export]
Q[Fairness Monitor]
end
Citizens --> Gateway
Gateway --> Inference
Inference --> Data
Inference --> Governance
style F fill:#90EE90
style H fill:#90EE90
style I fill:#90EE90
style J fill:#90EE90
GI Cloud (MeghRaj) Integration
For government deployments, GI Cloud provides a foundation:
What GI Cloud offers:
- STQC-certified infrastructure
- Data residency guarantees
- Integration with government identity systems
- Empanelled service providers
What you still need to build:
- AI model hosting layer
- Inference orchestration
- Sovereignty verification
- Audit and compliance tooling
GI Cloud is infrastructure, not an AI platform. The AI layer must be built on top.
What We’ve Built
Sankalp is our sovereign AI gateway designed for government:
- Complete sovereignty verification - validates every request stays within Indian infrastructure
- Model routing - connects to sovereign model providers (Indian models, self-hosted open-weight)
- Zero external dependencies - no telemetry, no foreign API calls, no data leakage
- GI Cloud ready - deploys on MeghRaj and NIC infrastructure
- RTI/CAG compliance - built-in audit trails and export capabilities
We’ve also built Vishwas for fairness monitoring - because government AI must be demonstrably fair across all citizen demographics.
And Drishti for explainability - because every government AI decision must be explainable to the citizen it affects.
Getting to Sovereign AI
For government agencies starting their sovereign AI journey:
Step 1: Audit Current State
- List all AI/ML systems
- Map every external dependency (APIs, embeddings, telemetry)
- Identify sovereignty gaps
Step 2: Classify by Sensitivity
- Citizen-facing decisions: Highest sovereignty
- Internal operations with citizen data: High sovereignty
- Internal analytics: Medium sovereignty
- Public information: Lower sovereignty
Step 3: Plan Migration
- Start with highest-sensitivity systems
- Replace external APIs with sovereign alternatives
- Implement audit trails before going live
Step 4: Verify Continuously
- Automated sovereignty checks on every deployment
- Regular audits for drift
- Penetration testing for data leakage
The Stakes
Government AI handles some of the most sensitive decisions affecting citizens’ lives:
- Benefit eligibility
- Grievance resolution
- Document verification
- Risk assessment
Sovereignty isn’t about nationalism - it’s about accountability. When a government AI makes a decision affecting a citizen, that decision should be:
- Explainable by the government
- Auditable by Indian institutions
- Subject to Indian law
- Independent of foreign policy changes
Sovereignty theater - ticking compliance boxes while data flows to foreign servers - betrays citizen trust.
True sovereignty requires control of the entire AI stack. It’s harder. It’s more expensive. And for government AI, it’s necessary.
Contact us if you’re building sovereign AI for government. We’ve done this, and we know what it takes.